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Laminar-turbulent transition in the decelerating boundary layer of Gad-el-Hak et al. 
(1984) is studied by solving the incompressible, time-dependent, three-dimensional 
NavierStokes equations numerically. The temporal and spatial evolution of the 
experimental flow structures is approximated with spatial periodicity and temporal 
evolution while maintaining mean-velocity profiles appropriate to the spatially- 
developing flow. Other than the mean flow, the initial flow fields include only small- 
amplitude white random noise. This and the large streamwise and spanwise 
dimensions of the numerical domain allow unstable waves to be selected by the 
dynamics, instead of being imposed arbitrarily as in previous numerical studies. In 
that sense, the transition is natural. In  the early stages of transition, two- 
dimensional and slightly oblique waves grow rapidly owing to inflexional instability. 
Their subsequent nonlinear interactions trigger the breakdown and create a pattern 
of A vortices. The patterns of A vortices are more irregular than those found in 
ribbon-induced transition. The tips of the A vortices are rarely aligned with the flow 
direction, and they appear in local patches, consistent with the experimental 
visualizations of Gad-el-Hak et al. A simple model based on the interference of 
multiple modes of instability accounts for these features, but the specific pattern of 
A vortices depends on the random content of the initial flow field. A simulation of the 
later stages of transition is performed with higher numerical resolution, showing that 
the ‘naturally-born ’ A vortices undergo breakdown processes similar to those of their 
ribbon-induced counterparts. 

1. Introduction 
Laminar-turbulent transition is a transient stage of a flow field from ‘regular and 

smooth’ laminar flow to ‘random and chaotic’ turbulent flow. The experiment of 
Reynolds in 1883 established that such a transition stage occurs prior to a laminar 
flow becoming fully turbulent. It was also shown that transition occurs at a 
dimensionless number (now called ‘Reynolds number ’) above some threshold value. 

For the purpose of controlling engineering flows, it is important to understand the 
mechanisms active in this transient phenomenon. Suppression or triggering of 
transition is used when either laminar or turbulent flow is desirable in a specific 
application. For example, laminar flow is favoured to reduce drag on an airfoil. On 
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the other hand, turbulence is desirable in combustion or chemical mixing, or in 
preventing separation. 

In spite of the tremendous effort dedicated to laminar-turbulent transition over 
several decades, the understanding of transition is far from complete. Laminar- 
turbulent transition is a complicated phenomenon that depends not only on the 
Reynolds number, but on other factors such as pressure gradient, free-stream 
disturbance level and wall roughness, and becomes highly nonlinear in its later 
stages. This combination of numerous parameters and nonlinearity has been a major 
obstacle to satisfactory understanding of laminar-turbulent transition. 

In boundary layers, the linear theory describes the very early two-dimensional 
evolution of disturbances, hereafter called the ‘primary instability ’, quite well, but 
fails to explain their later development. It was natural that, as the next step, 
investigations should focus on the development of three-dimensional disturbances, 
now attributed to a ‘ secondary instability ’. Many vibrating-ribbon experiments 
(Klebanoff, Tidstrom & Sargent 1962 ; Kovasznay, Komoda & Vasudeva 1962 ; Saric, 
Kozlov & Levchenko 1984) were performed to study the production of three- 
dimensional structures and their subsequent deformation. Theories based on 
nonlinear interaction of wave triads (Craik 1971), and on the secondary instability 
in the presence of a finite-amplitude two-dimensional wave (Orszag & Patera 1983 ; 
Herbert 1985) have been developed. Several types of breakdown (patterns of A 
vortices) were identified and experimentally verified (Thomas 1983 ; Saric et al. 1984 ; 
Kachanov & Levchenko 1984). Herbert (1988) reviewed the secondary instability. 
Little work has been done on stages beyond the onset of secondary instability owing 
to the highly nonlinear and intermittent nature of the flow. It is believed that these 
later stages of transition in boundary layers involve the formation of thin but intense 
shear layers (called ‘ high-shear layers ’), multiple spikes, hairpin vortices and streaky 
structures near the wall, and finally the formation of turbulent bursts. There are also 
‘bypass’ mechanisms that avoid some of the stages in this scenario. 

Most numerical simulations of transition have been done on geometrically-simple 
flows such as plane channel flows and flat-plate boundary layers. Wray & Hussaini 
(1984) performed a numerical study on the breakdown stage of transition in the 
Blasius boundary layer. Using a finite-amplitude two-dimensional wave and a pair 
of finite-amplitude oblique waves as initial conditions, they accurately simulated the 
multi-spike stages. Their results are consistent with the experimental data of 
Kovasznay et al. (1962). Laurien & Kleiser (1985) conducted similar simulations ; 
they included subharmonic-type breakdown which Wray & Hussaini (1984) did not 
consider. They also studied active transition control by employing anti-phased 
suction/blowing at the wall. Spalart & Yang (1987, hereinafter referred to as SY) 
numerically studied ribbon-induced transition in Blasius flow. Besides a finite- 
amplitude two-dimensional Tollmien-Schlichting (TS) wave, they used small- 
amplitude random noise as a background disturbance, and simulated the early stages 
of transition. Their results are in good agreement with the experiments of Saric et al. 
(1984). 

In the numerical simulations mentioned above, it was assumed that the mean 
velocity depends on only y and t ,  and that disturbances are periodic in x and z. 
Therefore, the disturbances grow in time, in contrast to laboratory experiments or 
practical‘flows, in which they grow in both space and time. This ‘temporal ’ approach 
can be related to the spatial approach only when the growth rates of the disturbances 
are small, and the mean flow is treated as parallel (Gaster 1962). Fasel(l976) studied 
spatially-developing instabilities in two-dimensional flat-plate boundary layers. 
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FIGURE 1. Schematic drawing of a decelerating boundary layer. (a )  Configuration of the 
experiment of Gad-el-Hak et al. (1984). (21) Velocity of the plate. 

Fasel, Konzelmann & Rist (1986) extended the spatial approach to three-dimensional 
disturbances ; the disturbances remain periodic in the spanwise direction. Their 
approach represents the experimental situation more accurately, but the numerical 
difficulties are also more severe. 

Ribbon-induced transition has been a prevalent subject in transition research 
because it involves a clean and reproducible mechanism leading to transition. 
Although the understanding of ribbon-induced transition is fundamental, it is also 
different from practical situations in that the primary instability is ‘isolated 
periodic ’ (Gaster 1980) and arbitrarily chosen. The next step should be to investigate 
a route to transition in which unstable waves are naturally selected and modulated. 
Natural transition is more difficult and expensive to simulate than forced (or 
controlled) transition, such as ribbon-induced transition. A larger computational 
box, more computing time, and more refined grids are needed to follow instability 
mechanisms which are not known in advance. 

An ideal flow to start studying natural transition is Blasius flow. However, its 
simulation is very difficult owing to the problems listed above. The decelerating 
boundary layer provides an alternative. Deceleration generates a strong inflexional 
instability which causes transition to occur more quickly than in Blasius flow (Gad- 
el-hak & Davis 1982; Gad-el-Hak et al. 1984, hereinafter referred to as GH), thus 
facilitating numerical simulation. This flow is also closer to a time-developing flow 
because transition occurs almost simultaneously all over the plate. Therefore, this 
problem may be one of the more suitable boundary-layer problems that can be 
addressed by a temporal code. The large growth rates obviate the need for 
considering non-parallel effects. The review article by Kleiser & Zang (1991) gives a 
further discussion on spatial and temporal simulations. 

For these reasons, a decelerating flat-plate boundary layer was chosen for 
numerical simulation. Experiments on such flows were done by Fales (1955) and 
Hegarty (1958). GH performed an experiment on the boundary layer on a 
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decelerating flat plate in a towing tank. They observed the evolution of strong two- 
dimensional waves, followed by three-dimensional distortion, A-shaped vortices and, 
finally, breakdown to turbulence. These processes occurred without artificially 
introduced waves. 

The physical configuration of the present study and of the GH experiment is 
depicted in figure 1 (a).  A flat plate of finite length, L, moves in stationary fluid with 
a velocity, U,, which varies with time, t .  Initially, the velocity is Ui; i t  then decreases 
linearly to a final constant velocity, U, (figure 1 b ) .  The deceleration period is denoted 
by t*.  

The three dominant parameters are Rp, the Reynolds number based on the initial 
displacement thickness (13:) at a given streamwise location, t*Ui/8;, the non- 
dimensionalized deceleration period which measures the rapidity of the deceleration, 
and Uf/Ui, the ratio of the final velocity to  the initial velocity which represents the 
strength of the deceleration. The laminar flow is not self-similar, but the mean 
velocity profiles a t  a given time collapse onto a single curve if the three parameters 
are matched. 

2. Mathematical and numerical considerations 
2.1. Assumptions 

We make the approximation that the mean flow depends only on y and t ,  and that 
the disturbances are periodic in x and z and amplify in time. Under these 
assumptions, Fourier methods can be employed in the streamwise and spanwise 
directions. The effects of these assumptions are subtle and hard to  evaluate. A rough 
estimate can be made by comparing the computational results with experiments or 
simulations of spatially-developing flow. Fasel et al. (1986) studied instabilities in a 
spatially-developing (only in the streamwise direction) boundary layer, and found 
good agreement with a temporal computation in the linear stage of transition. 
Temporal simulations by Wray & Hussaini (1984) of the breakdown stage of 
transition in Blasius flow also showed most of the essential features of the experiment 
of Kovasznay et al. (1962). Therefore, the use of the temporal approach is reasonable 
but care must be taken in evaluating the results. 

Boundary layers are more difficult than channel flows to simulate. The effect of 
increasing thickness on linear stability has been studied by Barry & Ross (1970), 
Ling & Reynolds (1973), Saric & Nayfeh (1975), and others. Although their 
approaches are different, and non-parallel stability theory is highly controversial, 
their conclusions are that the boundary layer is slightly less stable when the non- 
parallel correction is included (i.e. the critical Reynolds number is less than that of 
the parallel flow) and that the non-parallel effect diminishes as the Reynolds number 
increases. Furthermore, the GH experiment reveals several wavelengths in 2 and z 
which appear to  be a t  the same stage of breakdown. This suggests that periodic 
conditions in x and z should be adequate, and more so in this flow than in Blasius 
flow. 

Under these two basic assumptions, our numerical simulations will be of 
temporally growing boundary layers. However, we will approximate spatially 
developing flows as closely as possible by making corrections; we call this a ‘pseudo- 
spatial approach ’. The details are discussed below. 
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2.2. Spectral formulation 
The full time-dependent incompressible NavierStokes equations with appropriate 
initial and boundary conditions are solved under the assumptions of $2.1. They are 

au 1 
- - u x w  = --V[P+~(pu.u)]+vV2u+F, 
at P 

u = O  a t y = O ,  
u+ U,(t) as y +  00. 

Here, F(y, t )  is a forcing function which will be discussed in later sections, and U,(t) 
is the velocity far from the plate. Initial conditions are given below. 

We use a weak formulation similar to Leonard & Wray’s (1982), except for the 
choice of weight functions. This is described in detail elsewhere (Spalart, Moser & 
Rogers 1991). Spectral methods, which have very high accuracy for smooth flow 
fields, are employed in all three directions. Since we deal with an incompressible flow 
in which a disturbance at  one point in the flow field is instantaneously felt 
throughout the entire flow field via pressure interactions, the global character of 
spectral methods seems appropriate. The assumption of periodic disturbances allows 
the use of Fourier expansions in the streamwise and the spanwise directions. In  the 
normal direction, combinations of Jacobi polynomials are used (Spalart et al. 1991). 

2.3. Initial j b w  jield 
Time-integration requires an initial flow field. In a laboratory, there exist 
disturbances from various sources. They can be classified into two groups- 
irrotational (e.g. sound) and vortical disturbances (e.g. free-stream turbulence). It is 
not a trivial task to model these disturbances in the numerical simulations. 

In the present study, the initial flow field contains only small-amplitude random 
disturbances and the mean flow. The disturbances are obtained from a random- 
number generator, uniform in z and z, and tapering to 0 at the wall and in the free- 
stream. They are added only at the beginning of simulation. This is far from a perfect 
duplication of the disturbances in the laboratory flow field, which are probably 
continuous in both space and time, but it does activate all the modes that are capable 
of a large amplification. It should be noted that most other simulations (Kleiser & 
Laurien 1985; Wray & Hussaini 1984; Biringen 1984) did not include noise-like 
disturbances at all. 

2.4. Computational resources 

All computations were carried out on the Cray X-MP/48 at the NASA Ames 
Research Center. Numerical simulations of the early stages of transition use 
64 x 40 x 48 grid points in x-, y- and z-directions, respectively. A typical run takes 
about 650 timesteps, each requiring about 4 s of CPU time. In the case of later stages 
of transition, the resolution is successively refined (by means of spectral inter- 
polation) ; the maximum number of grid points used was 96 x 128 x 512. Owing to 
the large amount of data, it is necessary to hold the data on a secondary storage 
device, and to load small sections of it into the core memory to be processed. 

3. The decelerating two-dimensional boundary layer 
This section describes simulations of an incompressible two-dimensional decele- 

rating laminar boundary layer on a flat plate of finite length. A two-dimensional 
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FIQURE 2. Mean-velocity profiles obtained from the two-dimensional code, R8,* = 1090, 
t*U,/S$ = 733, UJU, = 0.75, At/ t*  = 0.2. 

unsteady boundary-layer code was written and tested, and used to provide the mean 
velocity profiles for the three-dimensional simulations. Details will be given in $4. It 
is also helpful to study the linear stability characteristics of this flow before 
performing full three-dimensional simulations. 

3.1. Formulation and numerical procedure 

The configuration of the GH experiments is depicted in figure 1 (a). The laminar flow 
is two-dimensional. For incompressible flows, the decelerating-plate problem and the 
problem in which the plate is stationary and the free stream decelerates generate the 
same flow (see Appendix). Furthermore, in the experiment, all flow variables were 
measured relative to the plate. For these reasons, we simulate the decelerating-free- 
stream problem. 

Under the boundary-layer approximations, the governing equations and initial 
and boundary conditions are 

au au au au, a2u -+ U-+ v- = - +V-, 
at ax ay dt ayz 

au av 
ax ay -+- = 0, 

U = U,(x,y) at t = 0, 
U = V = O  a t y = O ,  

U-t  U,(t) as y-f co, 
where U and V are the velocity components, U ,  is the streamwise component of the 
free-stream velocity, and U, is the streamwise velocity in Blasius flow. 

Equations (3.1)-(3.5) hold for X E  [O,L]. A finite-difference method is employed in 
x, and a spectral method in y (using some of the basis functions of the direct- 
simulation code). Uneven grid spacing is used in the streamwise direction for better 
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FIGURE 3. Migration of the inflexion point, Rd; = 1090, t*U,/S,* = 733, -, UJU, = 0.56, 
- - - ,  U,lU, = 0.94. 

t / t*  k,S* k,c, 

0.0 0.25 0.4853 
0.2 0.26 1.022 
0.4 0.27 1.281 
0.6 0.27 1.346 
0.8 0.28 1.381 
1 .o 0.29 1.448 

TABLE 1. Growth rates of the most unstable waves at xlL = 0.37, where c, is the imaginary 
part of the phase velocity 

accuracy near the leading edge. The streamwise derivative @/ax) is approximated by 
second-order finite differencing except at  the outflow, where upwind differencing is 
used instead. The inflow is assumed to be the instantaneous Blasius flow (based on 
U,(t)) at the first x station (0.04L). To integrate (3.1) in time, the Crank-Nicolson 
scheme is applied to the viscous term, and a third-order Runge-Kutta scheme is 
applied to the convective terms. 

3.2. Linear stability analysis 
In this section, results obtained with the two-dimensional code for the decelerating 
boundary layer are discussed. The flow parameters are R,; = 1090, t*Ui/&$ = 733, 
and Uf/Ui = 0.75, as in the experiment. Figure 2 shows the velocity profiles at  
x/L = 0.37 and at  time intervals of At/t* = 0.2. Except for the initial Blasius profile, 
these profiles are inflexional. The migration of the inflexion point is given in figure 
3 for two values of the deceleration strength, UJU, = 0.56 and Uf/Ui = 0.94, while 
the other parameters remain unchanged. The stronger the deceleration, the further 
the inflexion point migrates from the wall. In any case, it  returns to the wall when 
the profile approaches the final Blasius profile. Since the intermediate profiles are 
inflexional, we expect the flow to be very unstable (Drazin & Reid 1981). Table 1 
gives the growth rates of the most unstable waves of each profile in figure 2. They 
were calculated using a linearized version of the three-dimensional code assuming 
quasi-steady and parallel mean flow. At  the end of the deceleration, the growth rate 
reaches a maximum about three times as large as that of the Blasius profile. This 
allows the possibility of simulating natural transition without excessive computation 
times. The strong growth rate eliminates the need for the initial strong two- 
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dimensional TS wave, which was included in previous numerical simulations in order 
to duplicate the vibrating-ribbon technique of the experiments. 

4. Simulations of the early stages of transition 
4.1. Formulation 

Since the stability characteristics are very sensitive to the shape of the mean-velocity 
profile, it is important that  this profile be correct especially in a simulation of the 
early stages of transition. Such a simulation is long enough for the primary 
instability to produce a large amplification. Therefore, i t  is necessary in a temporal 
simulation to modify the x momentum equation to  maintain the correct mean- 
velocity profile (see SY). The modified x momentum equation is 

au 1 a9 auZD -+u.vu = ---+vv2u+--v- 
at P ax at ay2 

where j7 is the pressure fluctuation and U2,(xo, y, t )  denotes the velocity profile 
generated by the two-dimensional unsteady boundary-layer code, described in Q 3, a t  
a streamwise location x,. The last two terms are artificially added to the usual 
Navier-Stokes equations. Therefore, for this problem, the forcing term F in (2.1) is 

Averaging (4.1) in x and z, in the manner of Reynolds-averaging, yields 

Equation (4.2) with the initial condition, U(y, 0) = U,,(xo, y, 0 ) ,  shows that the mean- 
velocity profile (U(y, t ) )  will equal U,, in the early stages of transition, when the 
Reynolds stress (7) is small. We used the two-dimensional code to compute U,, a t  a 
given streamwise location a t  a set of discrete times. The velocity profiles a t  
intermediate times were obtained by linear interpolation. 

4.2. Choice of parameters 
To match the experiment, we chose the ‘numerical’ test section to be at x = 0.62 m 
(L = 2.7 m), the period of deceleration to be t* = 5 s, and the initial and final 
velocities to be Ui = 0.4 m/s and U, = 0.3 m/s. Although the experimental 
visualization pictures were taken a t  x = 1.0 m by GH, the two-dimensional profiles 
are taken at x = 0.62 m. The reason is given in $4.4.2. Using these values, the key 
parameters are Rg = 856, t*U,/&,* = 935, and U,/U, = 0.75. At this rate of 
deceleration, flow separation does not occur. I n  the experiment, the plate was towed 
a t  the constant initial velocity before the deceleration in order to eliminate start-up 
unsteadiness and to establish a Blasius profile over the whole plate. Background 
disturbances are simulated by including small-amplitude white random noise at the 
beginning of the simulation. I n  order to establish realistic waves, we maintained the 
initial Blasius profile for a time t*, namely 5 s ,  before decelerating the flow. As a 
result, at the start of deceleration, the unstable modes have more energy than the 
other modes. This represents the disturbances in the developed Blasius flow more 
accurately than unprocessed white random noise. 
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t / t *  Theory Simulation 

0.4 0.47 0.47 
1.2 1 .11  1 .11  
1.4 1.23 1.20 
1.5 1.25 0.86 

TABLE 2. Comparison of calculated growth rates with quasi-steady theoretical ones (5 = 0.62 m) 

The choice of the computational box size is somewhat arbitrary. It must be large 
enough to contain the essential features of the flow. The smallest non-dimensional 
wavenumbers in the streamwise and the spanwise directions were empirically chosen 
to be k ,  S,* = 0.0420 and kZ0 13: = 0.0672, respectively. With these values, the 
streamwise and the spanwise sizes of the computational box are about 150 times and 
93 times the initial displacement thickness at  x = 0.62 m (S,*), respectively. Based on 
the wavelengths predicted by linear theory one can expect 5-7 two-dimensional 
waves to be contained in the computational domain. The grid was relatively coarse 
( 6 4 x 4 0 ~ 4 8 )  but sufficient for the early stages. For instance, it could resolve 21 
waves in the x-direction. 

4.3. Code verijimtion 
Figure 4 shows the growth of the most unstable two-dimensional wave obtained with 
the full simulation, which corresponds to k,@ = 0.294 (k ,  is the dimensional 
streamwise wavenumber). Figure 4 gives the maximum value (with respect to y )  of 
the modal U,,, (modulus of the Fourier coefficient) as a function of time. In the 
beginning, the behaviour is linear. The small initial dip, already observed for noise- 
like disturbances (see SY), is due to the decay of fluctuations not belonging to the 
most unstable eigenmode. Once established, the eigenmode grows exponentially at  a 
constant rate. Deceleration starts at t / t*  = 1.0. The growth rate increases during 
deceleration as expected from linear theory (table 1). In the linear regime, the growth 
rate calculated from the full simulation is very close to the value obtained from the 
Orr-Sommerfeld equation with the corresponding mean-velocity profile ; this region 
corresponds to the first two rows of table 2. When the amplitude becomes large, 
nonlinear interactions occur and the growth rate deviates from the Orr-Sommerfeld 
value as shown in the last two rows of table 2. The end of the simulation shows a 
tendency towards turbulent behaviour. 
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FIQURE 5. Spanwise variations of the instability waves. 
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FIQURE 6. Instantaneous streamwise velocity at two different vertical locations. 
-, y/6, = 1.0; ---, y/6, =0.1. 

4.4. Results and discussion 
4.4.1. Point values 

Streamwise-velocity histories at three equispaced spanwise locations and the same 
streamwise location are given in figure 5.  The three ‘numerical’ probes are at 
5 = 1.0 m and y = 0.16, where 8, is the initial boundary-layer thickness and 28, apart 
in the spanwise direction. This matches the GH experiment. The decrease of the 
mean velocity is due to the deceleration. The fluctuations are roughly sinusoidal, 
which suggests that they are manifestations of the primary instability. The phases 
at  the three locations are almost identical until about t / t *  = 1.32, and only slightly 
different afterwards. This implies that two-dimensional and slightly oblique waves 
dominate in the early stages of transition. The experiment shows the same degree of 
two-dimensionality. See figure 8 in GH (1984). After t / t *  = 1.6, the three velocities 
are significantly different in magnitude and phase, which indicates the onset of three- 
dimensional disturbances amplified by the secondary instability. 

Figure 6 shows the streamwise velocity at  two different vertical locations y = 0.18, 
and y = 8, (again matching the GH experiment), at  the same streamwise and 
spanwise locations. The mean velocity at  y = 8, decreases consistently. On the other 
hand, the mean velocity at y = 0.18, decreases in the beginning, but increases later. 
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Laser sheet- 

Yf * 
FIQURE 7. Schematic drswing of experimental flow visualization. 

In  the laminar flow, the mean velocity decreases at both locations owing to the 
applied deceleration (figure 2). The transitional flow, however, shows a different 
trend as the instability brings high-momentum fluid downwards, and low-momentum 
fluid upwards. Moreover, the two signals have opposite phases, indicating that the 
perturbation has a vortical nature. The experiment indicates the same trends, see 
figure 12 in GH (1982). 

4.4.2. Flow visualization 

A common way of studying flow structures is via flow visualization with passive 
particles. In  experiments, various methods are available depending on the flow under 
study. GH used a fluorescent dye a$ a marker. They released the dye a t  the wall, and 
the lifted portion of it was illuminated by a laser sheet (figure 7). In order to mimic 
this method, we released 9000 passive particles, uniformly in x and z over the 
computational domain, at y = 0.1976, at the beginning of deceleration, and then 
subsequently plotted the (x, 2)-positions of particles whose y-position was above 
0.2028,. These y-values were chosen empirically and lie between the main and 
secondary A vortices near the wall (this will become clear in $4.4.3). Thus, the 
following particle visualizations indeed represent the principal A structures. 

The location of the particles was numerically computed in the same way as in the 
ribbon-induced transition simulation of SY, using linear interpolation of velocity in 
space and a Runge-Kutta third-order scheme in time. 

Figures 8 (a)-8 (d) are four selected frames from the numerical flow visualization. 
The flow is from bottom to top. No particles are in the frame at the onset of 
deceleration, because all particles are below the ‘numerical laser sheet ’ (figure 8a). 
Particles are gradually lifted upwards, and confirm that two-dimensional and 
slightly oblique waves are dominant in the early stages of transition (figure 8 b ) .  
There is a dislocation between two groups of waves. This point will be further 
discussed in $4.5. The particles form A-shaped structures (figure 8c), and then 
breakdown occurs (figure 8 d ) .  These A structures originate not at the test section but 
somewhere upstream, and translate downstream a t  the phase velocity of the 
dominant wave. To correctly simulate this in a time-developing simulation, it is more 
accurate to use upstream mean-velocity profiles. Recall that much of the wave 
selection occurs before the deceleration. The two-dimensional wave travels 
approximately 0.35-0.40 m before the A structures develop. Thus, to compare our 
numerical visualization with the GH experiment at the breakdown stage, we used the 
mean-velocity profiles at  x = 0.62 m (whereas their pictures (figure 2) were taken at  
x = 1.0 m). All the non-dimensional parameters reported in this section (except for 
figure 22) are based on the initial displacement thickness (a,*) a t  x = 0.62 m. 

The angle between the two legs of a A structure becomes narrower with time, 
which is an indication of upward and forward motion of the heads, and breakdown 
first occurs at the tip (figures 8 c  and 8 d ) .  The timescale of the breakdown is very 
small compared with the development time of the A vortices. Our result is in good 
agreement with the experimental flow visualization; see figure 2 in GH (1984). 

15 F1.M 24U 



444 

120 - 

x 80- 
z 

40- 

K.-S. Yaw, P. R.  Spalart and J .  H .  Ferziger 

I 

0 40 80 
./a,* 

120 

x 80 
7 
80  

40 

0 40 80 
./a,* 

120 

40 

I20 

. .  

40 

0 40 80 0 40 80 
./a,* z/a,+ 

FIGURE 8. Numerical flow visualization with passive particles. (a) t / t *  = 1.00; (b )  t/t* = 1.15; 
(c) t / t *  = 1.61; ( d )  t / t*  = 1.64. 

We can identify further features of the A structures common to the experimental 
and numerical flow visualizations. First, the line connecting the tips of the A 
structures is slightly oblique to the flow direction, the angle being approximately 17" 
in the simulations and about 20" in the experiment (we should keep in mind that in 
each case we are describing only one realization of a phenomenon that originates in 
random noise). See figure 2(d )  in GH (1984). This contrasts with ribbon-induced 
transition in Blasius flow (Saric et al. 1984; SY) in which the tips of the A vortices 
are always aligned with the flow direction. Secondly, the occurrence of the vortices 
is localized in space. In some parts of the flow field, no A vortices are seen yet. 
Finally, their streamwise spacing is about 546,. Compared with the A structures 
found in ribbon-induced transition, they look more irregular - a feature of natural 
transition. Consequently, it is harder to control natural transition than forced 
transition. The obliqueness and localization of the A structures will be explained in 
$4.5. 



Natural transition in a decelerating boundary layer 445 

1 

FIGURE 9. Contour plots for w, ((a), (a), (c): -, -60 s-'; ..., 60 s-l) and w, ( ( d ) ,  (e), (f): 
-90s ' )  for three y ranges ((a), (d ) :  0-0.128,; (b ) ,  (e ) :  O.19-O.45S0; (c), (f): 0.458, up), t / t*  = 1.61. 
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FIGURE 10. Three y ranges for flow visualization (not scaled). 

4.4.3. Vortical structures 

The following questions may be raised. Which parts of the flow structures do the 
illuminated particles mark ? Do the A patterns found in the experiment actually 
represent A-shaped vortices ? Figure 9 gives streamwise-vorticity (w,) and spanwise- 
vorticity (w,) contour plots for three different y-ranges in a perspective view, taken 
at the same time and streamwise location as figure S(c).  Figure 10 illustrates the 
three y-ranges for which the contour plots were drawn. In  this way, vortical 
structures can be clearly seen without overlapping. The inflexion point of the mean- 

15-2 
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FIGURE 11 .  Instantaneous streamwise velocity between and outside the legs of the A vortices, 
t / t*  = 1.61. ~ , ( between ’ profile ; - - -, ‘ outside ’ profile ; ---, mean velocity profile. 

velocity profile is located at y = 0.24,. The regions marked by solid and dotted lines 
are regions of large w, with opposite signs. Figures 9(a) and 9(b) show not only the 
principal A vortices but also secondary vortices below them, which are necessary to 
satisfy the no-slip boundary condition at  the wall. The locations of the A patterns in 
figure 8 (c) and the A vortices in figure 9 ( b )  match. This supports the usefulness of the 
visualization technique in locating high-vorticity regions. Even though passive 
particles need not follow vortical structures in viscous flows, in combination with the 
laser-sheet technique they do identify these structures for the time period of the GH 
experiment. 

Figures 9(d)-9(f) show w, contour plots for the same y-ranges. Near the wall, 
large-w, regions are due to the secondary A vortices and remnants of the TS waves 
(figure 9d). In the intermediate region, the w, structures are less coherent (figure 9e). 
It is believed that the velocity field associated with the A vortices generates strongly 
inflexional shear layers (high w, regions) above the vortices ; these are suscepf,ible to 
short-wavelength disturbances (Betchov 1960 ; Greenspan & Benney 1963). The 
existence of such layers in ribbon-induced transition was demonstrated experi- 
mentally by Williams, Fasel & Hama (1984). In spite of the difference in the 
mechanism producing the A vortices, we can locate and identify high-shear layers in 
our natural transition simulation (figure 9f). Note that in this y-range, w, is not 
strong (figure 9c), i.e. the high-shear layers are located above the A vortices. The 
arrowhead shape of the high-w, regions strongly resembles that found in the 
experiment of Kovasznay et al. (1962). Figure 1 1  shows instantaneous streamwise- 
velocity profiles between and outside the legs of a A vortex. The ‘ between ’ profile 
reveals the high-shear layer above the vortex. One can expect another inflexional 
instability (which is localized because the ‘outside’ profile is stable) to be associated 
with this high-shear layer. 

Vortical structures can also be studied by means of vortex lines. Figures 12 (a )  and 
12 ( b )  show vortex lines in the computational domain, taken at the same time and at 
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FIGURE 12. Vortex lines, t / t *  = 1.61. (a) Plan view; ( b )  side view. 

the same streamwise location as figure 8 (c). The flow direction is from bottom to top 
in figure 12 (a)  and from left to right in figure 12 (b). Three A vortices are clearly seen 
in figure 12(a). The side view (figure 12b) shows that they are lifted upwards. The 
shapes of vortex lines strongly depend upon the starting points used in computing 
the vortex lines. To generate figure 12, three vertically-equispaced starting points 
were chosen near the primary vortices (range I1 in figure 10) a t  a given streamwise 
location. The streamwise spacing between bundles of vortex lines is one streamwise 
wavelength of the most unstable wave (see figure 8b) .  

Figure 12 suggests that the formation and lifting of A vortices and subsequent 
vortex stretching are essential steps in natural as well as forced transition. The 
ensuing development of the A vortices will be studied in $5 with more refined 
numerical resolution. 

4.4.4. Energy spectra 
Figures 13 (a)-13 ( d )  present the distribution of the kinetic energy over the Fourier 

modes at four times. The energy of each mode has been integrated in the normal 
direction. Only half the wave space needs to be shown (the Fourier transform of a real 
function satisfies a summetry condition). Since we are interested only in modes for 
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FIQURE 13. Energy spectra, energy scale logarithmic, base 10. (a) t / t *  = 0.00; ( b )  t / t *  = 0.97 ; 
(c) t / t *  = 1.40; (d )  t / t *  = 1.61. 

which energy is above a certain level, ‘weak ’ modes are not shown. We also disregard 
the energy of the mean mode, which is not very meaningful since it is not Galilean- 
invariant. 

Recall that the simulation starts with small-amplitude three-dimensional random 
noise at t / t *  = 0 (figure 13a). The noise level was chosen so that at the time of 
breakdown the total energy in the fluctuations is about the same as in the 
experiment. Just prior to the initiation of deceleration, certain waves have been 
selected by the linear mechanism in Blasius flow (figure 13b); disturbances without 
streamwise dependence have significant energy. During deceleration, two-dimen- 
sional and slightly oblique three-dimensional waves grow rapidly (figure 13c). This 
is consistent with Squires’ theorem (Schlichting 1979). These waves dominate the 
primary stage of transition. (Recall figure 8 b . )  Later, they interact nonlinearly and 
fill the spectrum (figure 13d). The simulation was stopped a t  this point for lack of 
resolution. 

Note the ridges in figure 13 ( d ) ,  oblique to the k,-axis. This may be correlated with 
the fact that the A vortices are obliquely aligned. In  the simulation of the ribbon- 
induced transition, the ‘mountain tops’ are parallel to the ,%,-axis (figure 4 in SY), 
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FIGURE 14. Most unstable two-dimensional wave. 0, t / t*  = 0.98; 0,  t / t*  = 1.16; 
A, t / t *  = 1.54; +, t / t*  = 1.67. 

resulting in a straightly aligned pattern of A vortices. See figures 2 (f )-2 (h) in SY. 
This point will be further discussed in 54.5. 

4.4.5. Role of the most-energetic two-dimensional wave 
Here observe the development of the most unstable two-dimensional wave 

(k,S,* = 0.294) during deceleration. Figure 14 shows its magnitude profile at four 
times. Just before deceleration ( t / t *  = 0.98), the eigenmode hm the typical two-peak 
shape found in Blasius flow (Herbert 1984). Initially, it grows in a linear fashion, 
maintaining the two-peak shape. Around t/t* = 1.54, the shape begins to be 
distorted by nonlinear effects. A t  t / t*  = 1.67, the peak near the wall breaks into two. 
The dip between the two peaks is located near the critical layer. Similar behaviour 
has been observed in ribbon-induced transition in channel flows (Nishioka & Asai 
1985; Singer et al. 1987). Singer et al. (1987) studied local energy transfer among 
triads of waves, and found that the two-dimensional wave loses energy to three- 
dimensional waves near the critical layer and gains energy above the critical layer, 
resulting in double peaks near the wall. This again suggests that the most unstable 
two-dimensional wave (and possibly other strong oblique waves) in natural transition 
plays a role similar to that of the dominant two-dimensional TS wave in ribbon- 
induced transition. 

4.5. A model for natural transition 
The structure of a transitional decelerating boundary layer is less regular than that 
of a transitional boundary layer stimulated by a vibrating ribbon. The GH 
experiment and the simulations show groups of A vortices appearing locally in space, 
with their tips obliquely aligned with respect to the flow direction. 

This kind of unpredictable behaviour is inevitable because there are no 
‘predominant ’ modes in the flow field. In this section, a simplified model appropriate 
to natural transition will be developed. The model explains most of the features 
observed by flow visualization. 
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FIGURE 15. Interference between two waves. (a) 0 ,  Enhanced region; 
0, cancelled region : (b) resultant. 

(b)  - - 
4.5.1. Wave interference 

Linear theory shows that more than one wave can grow significantly prior t.0 the 
beginning of nonlinear interactions. This contrasts with ribbon-induced transition in 
which a single artifically-introduced two-dimensional TS wave dominates from the 
outset. In that case, the three-dimensional waves grow with the aid of the primary 
two-dimensional wave (secondary instability). In  natural transition, in addition to 
two-dimensional waves, slightly oblique waves have a good chance of becoming 
strong enough to interact with the three-dimensional waves. Figure 13(c) shows a 
good example of this. Let (k, S t ,  k, S t )  indicate a mode whose non-dimensional 
streamwise and spanwise wavenumbers are k, Sz and k, S t ,  respectively. The figure 
indicates that the two two-dimensional waves, (0.294,O) and (0.252,0), are strong as 
allowed by linear theory (and triggered by the initial random disturbances). 
However, two oblique waves, (0.252, -0.0672) and (0.252, -0.134) are approxi- 
mately as strong as the two-dimensional waves. 

In  the simplest situation, there are just two dominant waves; let us assume they 
are a two-dimensional wave and an oblique wave. Figure 15 (a) illustrates such a case 
with two waves whose streamwise wavenumbers differ only slightly. This is similar 
to the example mentioned above (figure 13c). The solid lines in figure 15(a) represent 
the wave crests. In  some parts of flow field (marked by solid circles) the perturbations 
are enhanced by constructive interference of the two waves, while in other parts of 
the flow (those marked by open circles) the perturbations are reduced by cancellation 
of the two waves. Figure 15 ( b )  depicts the result. Here, the thick solid lines represent 
the enhanced regions. Notice that each line is broken, not straight. This may explain 
the dislocation between two patches of waves observed in figure 8 ( b ) .  It can be 
further conjectured that the A vortices (which will appear in the enhanced regions 
owing to vortex tilting and stretching) will be obliquely aligned (figure 8c) .  Since 
there are ‘quiet’ regions in the flow field, one may expect that the A vortices will 
appear as local patches (figure 8 c ) .  

4.5.2. Test of the simple model 

The value of this conjecture can be demonstrated by numerical simulation. For 
direct comparison with the flow visualizations reported in this section, a simulation 
containing only one two-dimensional wave (0.294,0), and one oblique wave (0.252, 
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FIQURE 16. Energy spectra for model simulation. (a) t / t *  = 1.04; ( b )  t / t*  = 1.42; 
(c) t / t*  = 1.68; (d )  t / t *  = 1.86. 

-0.0672) was conducted. These are two of the stronger waves in the simulation 
described above (figure 13c). The shape of the two-dimensional wave was obtained 
by solving the linearized NavierStokes equations. The eigenfunction of the + mode 
(parallel to the wave vector) of the oblique wave was similarly obtained using 
Squire's theorem. A full simulation was then conducted with these two eigenmodes 
and the laminar flow as the initial condition ; no random disturbances were included. 
The initial amplitudes of the two modes were equal, and were chosen such that at the 
beginning of deceleration (t = 5 s), their magnitudes reach the level they do in the 
simulation with random disturbances (figure 13c). The - mode (perpendicular to the 
wave vector) of the oblique wave is established naturally. It gains energy from the 
interaction between the mean flow and the + mode. 

Figure 16 (a)-16 ( d )  give the spectra at four times. At the beginning of deceleration 
(figure 16a), the two-dimensional and oblique waves have their linear shapes. At  
t / t *  = 1.42, they reach about the same level of energy as in figure 13 (c), and nonlinear 
interactions begin to become significant (figure 16b). Since only two waves were 
seeded in this model simulation, nonlinear interaction occurs in a selective way 
(figure 16c). Initially the energy is in modes [j, m] = [7,0] and [6,  - 11 ( j  and m are 
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FIGURE 17. Flow visualization for model simulation. (a) t / t *  = 1.16; ( b )  t / t *  = 1.90. 

the indices of streamwise and spanwise wavenumbers). The energy, even during 
nonlinear interactions, is trapped in modes that satisfy j - m  = 71 (where 1 is an 
integer). If two wave vectors belong to that family, so do their sum and difference. 
Thus, the final energy spectrum (figure 16d) shows an interesting feature; the energy 
is confined to ridges, oblique with respect to the k,-axis. A less clean version of this 
phenomenon is observed in the simulation with random disturbances (figure 13d). 

A passive-particle visualization of this model problem is presented in figure 17. At 
the time of deceleration, 90o0 particles were released below the ‘numerical laser 
sheet ’, Sometime later (figure 17a),  some particles are lifted upwards, revealing the 
interference pattern found in the preceding subsection (see figure 15 b ) .  Dislocation 
between the two patches of particles is obvious. Finally, A vortices appear (figure 
17b). The tips of the A vortices are obliquely aligned as in the simulation with 
random disturbances (figure 8c). 

This simple model provides an explanation of the prominent features of the full 
simulation with random initial disturbances. The choice of the initial dominant 
waves is arbitrary, and need not be limited to two. The choice of wavenumbers and 
the number of dominant waves was made to match a particular simulation with 
random disturbances. In both numerical simulations and laboratory experiments, 
the initial perturbation to the flow field determines these factors, and varies from 
realization to realization. Figure 18 supports this idea. Here, the energy (integrated 
in the normal direction) of six modes neighbouring the most unstable two- 
dimensional wave (and the two-dimensional wave itself) is shown as a function of 
time for the simulation with random initial disturbances. Although they had 
approximately the same energy at  the beginning of simulation, they have been 
divided into two groups (‘dominant’ waves and ‘less-dominant’ waves) by the 
sorting-out process. The ‘ take-over ’ by the most unstable two-dimensional wave 
(0.294,O) is noticeable. When nonlinear interaction becomes significant (around 
t / t *  = 1.5), the two waves ((0.294,O) and (0.252, -0.0672)) which were selected for 
the model simulation dominate. 

To show that the selection of dominant waves depends on the initial conditions 
two further simulations, which differ from the one studied above only in the random- 
number sequences used to generate the initial conditions, were performed ; their 
passive-particle visualizations are shown in figures 19(b) and 19(c) along with the 



Natural transition in a decelerating boundary layer 453 

tit* 
FIQURE 18. Energy history of typical six modes. ---, [6,0]; -, [6,1]; -.-, [6, - 11; 

---, [7,01; * . * ,  [7,11; 0 ,  [7,-11. 

earlier result (figure 19a). In figure 19(b), the tips of A vortices are obliquely aligned, 
but in the direction opposite to that in figure 19 ( a ) .  In the case shown in figure 19 (c), 
A vortices appear in a scattered pattern. When there are more than two dominant 
waves, the pattern becomes less regular. In  fact, the energy spectrum corresponding 
to figure 19(c) shows that there are several important modes at the beginning of 
breakdown (figure 20). 

In summary, unlike ribbon-induced transition (forced transition), the pattern of A 
vortices in natural transition arises from the presence of multiple dominant waves. 
The selection of waves that play important roles is determined by uncontrolled 
perturbations in the flow. Hence the control of natural transition should be much 
more difficult than that of ribbon-induced transition. 

4.6. Dependence on parameters 
One expects the onset and rapidity of transition to depend strongly upon the rate of 
deceleration. Figure 21 shows the growth of the most unstable two-dimensional 
waves (k, S,* = 0.294) in full simulations with random disturbances for three different 
cases ; Uf/Ui = 0.56, 0.75, 0.94. The other parameters (Rg, t*Ui/&,*) remained 
unchanged. Obviously, stronger deceleration leads to earlier and quicker transition. 
However, we found that the patterns of the A vortices differ little in the three cases. 

A simulation was conducted to investigate the effect of Rg. Figure 22 shows the 
flow visualization of a simulation in which Rg = 1090 (this is the value at 2 = 1.0 m, 
as opposed to x = 0.62 m), and U,/U, and t* remained the same as in figure 8. The 
streamwise spacing of the A vortices (6.4 cm) is larger than in figure 8 ( c )  (4.6 cm) 
because the streamwise wavelength of the most unstable two-dimensional wave is 
larger for high Reynolds numbers. The overall pattern of the A vortices is similar to 
that of the case described earlier. 

The initial disturbance level is another parameter. Its effect is very similar to that 
of the rate of deceleration. Stronger perturbation leads to earlier transition, but there 
is no significant difference in the pattern of A vortices. 
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FIGURE 19. Effect of random-number sequences. (a) Sequence, 1 ,  t / t *  = 1.61; (b) sequence 2, 
t / t *  = 1.69; (c) sequence 3, t / t *  = 1.71. 

5. Simulations of the later stages of transition 
In this section, the later stages of natural transition in a decelerating boundary 

layer are investigated using much higher numerical resolution (up to 6.29 million grid 
points). The behaviour of individual 'naturally-born' A vortices and of the flow 
structures is studied rather than the global patterns discussed in the previous 
section. All the available experimental studies of the later stages of transition used 
an artificial device (vibrating ribbon or rubber-sheet stimulator) to generate A 
vortices. All the numerical investigations of the later stages of transition (Wray & 
Hussaini 1984 ; Biringen 1984, 1987 ; Krist & Zang 1987) included a pair of oblique 
waves in addition to a dominant two-dimensional TS wave in the initial field, to 
create a clean A vortex. Hence, the evolving structure is symmetrical in z. It is 
important to scrutinize this approach because transition in most engineering flows is 
natural and not symmetrical. Therefore, our natural-transition results will be 
compared with a forced-transition experiment (Hama & Nutant 1963) to identify 
differences. 
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FIQURE 21. Most unstable two-dimensional waves. ---, UJU, = 0.56; 
-, UJU, = 0.75; ---, U,/U, = 0.94. 

5.1. Choice of parameters 
Since we are interested in the development of an individual flow structure, we can 
reduce the size of the computational box to allow finer numerical resolution. 
Decreasing the Reynolds number (B8:) further eases the task because the eddies are 
not as small as their counterparts a t  high Reynolds number. We chose 

Rg = 607 (x = 0.311 m), kZoS,* = 0.298, and kZoS,* = 0.0953. 

With these values, the streamwise and the spanwise sizes of the new computational 
box become about 21 times and 66 times the initial displacement thickness ( S t ) ,  
respectively. From linear stability analysis, one can show that only one A vertex will 
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FIGURE 22. Effect of Reynolds number, R,: = 1090. 

be contained in this box. Nevertheless, our simulation still begins with random noise 
and is more realistic than the previous ones (Wray & Hussaini 1984 ; Biringen 1984, 
1987; Krist & Zang 1987), and it is fair to compare it with Hama & Nutant (1963). 

Since the Reynolds number is somewhat low (but above the critical Reynolds 
number), the growth rate of the most unstable two-dimensional wave is smaller 
than in the preceding case. To compensate, we increase the rate of deceleration 
(Uf/Ui = 0.5), but not enough to cause flow reversal. Under these conditions, A 
vortices appear around t / t *  = 1.602. 

The numerical resolution is refined as the flow evolves. Additional grid points are 
introduced whenever the ratio of the energy of the weakest mode to that of the most 
energetic mode approaches This means that the truncation error in the 
primitive variables is no more than 0.1%. A smooth fall-off of the energy a t  the 
highest wavenumbers is also ensured. The maximum number of grid points used, 
96 x 128 x 512, is enough to resolve structures in a fully developed turbulent flow a t  
this Reynolds number. The streamwise and spanwise spacing between grid points are 
Ax+ = 2.4 and Az+ = 1.4 in wall units (based on the mean wall stress a t  t/t* = 1.625). 
In the normal direction, the grid points are clustered near the wall, and the first grid 
point is located a t  y+ = 0.0012. 

5.2. Results and discussion 

5.2.1. Flow visualization 
A ‘hydrogen-bubble’ simulation is shown in figure 23. Two hundred bubbles were 

released on a vertical line in the peak plane (z/&,* = 35.3) a t  evenly-spaced times 
(At = 0.001t*). Although the flow is periodic in the x- and z-directions, bubbles which 
leave the computational box are discarded. A high-shear layer near y/&,* = 2.3 exists 
at  the first time shown (figure 23a). From the numerical point of view, the steep 
gradient far from the wall causes trouble as the flow evolves because the grid points 
are clustered near the wall ; the grid is not designed to capture the high-shear layer. 
A kink in the high-shear layer is clearly seen in figure 23(b) (see the arrow), and a 
concentrated vortex later develops a t  that location (figure 23 c-e). These processes 
occur in a time much shorter than the duration of the linear stage; note the times 
given on the figures. This simulation is in good agreement with the experiment of 
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FIGURE 23. Hydrogen-bubble simulation. Bubbles are released in the peak plane. 
(a) t / t *  = 1.6021; (b)  1.6098, (c) 1.6161, (d) 1.6221, (e) 1.6266. 

Hama & Nutant (1963); compare figure 23 with their figure 13. They regarded the 
formation of a concentrated vortex as part of the breakdown process. Each of their 
frames corresponds very well to one of ours except the last one for which the 
numerical resolution may be insufficient (see below). Zang (1987, private com- 
munication) has shown that better agreement between the simulation and Hama & 
Nutant's experiment is obtained if the 'bubble wire ' is displaced slightly from the 
peak plane. 
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FIGURE 24. Hydrogen-bubble simulation. Bubbles are released at y/S,* = 1.32. (a) l / t *  = 1.6021; 
( b )  1.6098, (c) 1.6161, ( d )  1.6221, ( e )  1.6266. 

Figure 24 shows a simulation of a horizontal hydrogen-bubble wire. Two hundred 
bubbles were released on a spanwise line at  y/S$ = 1.32, at the same release times as 
in figure 23. The formation of a A vortex is clearly visible. Retarded particles near 
x/6,* = 14 and z/6,* = 35 indicate the formation of a high-shear layer. There is a close 
resemblance between the A vortex in our simulation and the one in the experiment 
of Hama & Nutant (1963). See their figure 11 ( a ) .  

Since the experiment was artifically controlled by a rubber-sheet stimulator, the 
agreement between the experiment and the simulation strongly suggests that in two- 
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FIGURE 25. w, contours in the peak plane. (a )  t / t*  = 1.6021, increment, -50 s-l; 
( b )  t / t *  = 1.6221, increment, -60 s-l. 

dimensional boundary layers and in the absence of by-pass mechanisms the 
formation of A vortices and high-shear layers and their subsequent breakdown to 
smaller scales are universal steps toward turbulence, and that the processes are 
identical in natural and in forced transition. 

5.2.2. Vortical structure 
As noted by many previous authors, the high-shear layer is an important feature 

of the later stages of development of this flow. It is created by the lifting of low-speed 
fluid that originates near the wall by the upwelling flow between the legs of the A 
vortex. After the low-speed fluid is lifted above the A vortex, it is stretched in the 
spanwise direction as the vortex-induced flow turns; as a result, the high-shear layer 
is slightly thicker near the centre (peak) plane of the A vortex than at the edges. As 
the lifted fluid has lower velocity than the head of the A vortex, it is left behind the 
latter. Thus, the upstream part of the high-shear layer contains the fluid that was 
lifted first ; this fluid has also been stretched laterally for a longer period. Since the 
upstream sections of the legs of the A vortex are also farther apart than the 
downstream ones, the upstream part of the high-shear layer is both wider and 
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FIGURE 26. w, contours in the plane of (a) x/S$ = 8.9; ( b )  x/&$ = 15.4; (c) x/8$ = 18.6, 
increment, - 10 s+. 

thinner than the forward section. These motions give the high-shear layer a 
characteristic arrowhead shape; in a plan view, the arrowhead lies within the pocket 
of the A vortex. 

The high-shear layer can be regarded as a short vortex sheet. Consequently, it is 
more susceptible to roll-up at  its forward and aft ends than to the Kelvin-Helmholtz 
type of instability associated with longer vortex sheets ; the forward (downstream) 
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FIQURE 27. o,-contour surface, t / t *  = 1.6221. (a)  Perspective view; ( b )  side view. 

end is a more likely site for the initiation of roll-up as the vorticity is more 
concentrated there. At a later time, the roll-up causes the forward section of the high- 
shear layer to bend downward. At the same time, the combination of roll-up and 
stretching thins the vortex sheet and causes it to  have two vorticity maxima; this is 
illustrated in figure 25 which shows contour plots of spanwise vorticity in the peak 
plane at t / t*  = 1.6021 and t / t*  = 1.6221, corresponding to parts (a )  and ( d )  of figures 
23-24. Zero contours are not shown for clarity. Figure 2 5 ( a )  contains only one 
maximum in the magnitude of w,;  i t  occurs in the high-shear layer a t  the location 
indicated by an arrow. This figure also shows the downwrd bending of the front part 
of the high-shear layer which later becomes the kink of figure 23(b) .  Figure 25(b)  
shows that w, later develops a second maximum. The locations of the two maxima 
are indicated by the two arrows. The original maximum (arrow 1 )  has been convected 
downstream and lifted upwards (it is now outside the boundary layer), the second 
local maximum appears in the upstream part of the high-shear layer and gains 
strength (arrow 2 ) .  The location of the original maximum (arrow 1) matches the tip 
region of the A vortex (see figure 28) .  Thus, one can deduce that the upstream 
maximum value (arrow 2 )  is an indication of the shear-layer instability. This is the 
two-spike stage. Although the simulation was stopped shortly after this time, it is 
important to note that a vortex sheet with two vorticity maxima will tend to roll up 
a t  two distinct locations, leading to a pattern typical of the so-called three-spike 
stage. Still later, these processes will result in the shear-layer rolling up in more and 
more complex patterns, in the production of additional maxima in the vorticity and, 
eventually, to the characteristic multi-spike patterns that have been observed. From 
figures 25 and 23(d) ,  one can deduce that the high-shear layer rolls up into a 
concentrated vortex a t  the tip region. It is not difficult to conjecture that the 
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FIQURE 28. Vortex lines at t / t *  = 1.6221. (a )  Perspective view; ( b )  side view. 

upstream high-w, region (arrow 2) in figure 25(b) will evolve into another 
concentrated vortex like the second roll-up in the experiment (part ( e )  in figure 13 of 
Hama & Nutant 1963). 

Contour plots of streamwise vorticity (w,) at x/6$ = 8.9, 15.4, and 18.6 are given 
in figures 26 (a)-26 (c), respectively, corresponding to t / t *  = 1.6266. The solid and the 
dashed lines represent negative and positive values, respectively. In  these figures, 
cross-sections of the primary vortices and the secondary ones below them are clearly 
seen. Note that the vortical structure is inclined to the plate with the tip region being 
highest. Near z/S,* = 55, a strong streamwise vortex is present. Above the primary 
A vortex, a relatively weak pair of vortices is found. Also one can see the beginning 
of formation of small-scale structures very near the wall. 

Three-dimensional vortical structures are shown in perspective in figures 27-29. 
The flow is in the x-direction. Figures 27 and 28 correspond to part ( d )  of figures 23 
and 24, and figure 29 corresponds to part ( e )  of figures 23 and 24. Since it is not 
possible to display the entire flow database at one time, only the data for the part 
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of the domain represented by the dotted box (using every other point in each 
coordinate direction) were used for the plots. In figures 27 and 28, the dotted box 
covers the entire range of x, 1.046; < y < 4.396;, and 25.26: < z < 45.96;. Figure 29 
covers the same ranges in x and y as figure 27, but only 27.68; < z < 43.06: in z. 
Figure 27 shows the w,-contour surface of - 175 s-l. Part ( b )  is an enlarged side view 
of part (a)  (see the arrow for the view point). The high-shear layer has been distorted 
(figure 27a) ,  and no longer has the arrowhead shape (see figure 9f). The downstream 
part of the high-shear layer is bent downwards (figure 27b). The separation of the 
high-shear layer into two parts indicates the presence of two local vorticity maxima 
as shown in figure 25 ( b ) .  This supports the idea of vortex roll-up mentioned earlier. 
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The process described in the beginning of this subsection can also be regarded as 
one in which the originally horizontal spanwise vortex lines representing the shear 
layer near the wall are lifted. Figure 28 (a)  shows vortex lines in a perspective view. 
The thick lines represent the A vortex which looks like a hairpin a t  this time. Owing 
to the velocity field associated with the A vortex, originally horizontal vortex lines 
near the plate (indicated by the thin lines) are pulled upwards between the legs of the 
A vortex, and then stretched in the spanwise direction. This leads to the flat heads 
of the vortex lines representing the high-shear layer formed above the A vortex. 
Vortex lines are attached to  the walls of the dotted box. As they cannot break during 
lift-up, the lifting process leaves walls of vertical vorticity connecting the high-shear 
layer near the top of the boundary layer to the low-speed fluid at  the base of the 
boundary layer on either side. This vertical vorticity represents thin shear layers 
(with large values of au/az) that lie just inside the legs of the A vortex. Figure 28(b) 
shows a side view of figure 28(a) .  The pulled vortex lines lean forward owing to  
acceleration of the fluid as it is lifted ; a line connecting their tops is inclined at an 
angle well-matched to that of w, contours (figure 25b). 

Vortex lines of the A vortex are shown a t  a later time in figure 29; it has become 
a hairpin (Q-shaped) vortex. It would be interesting to see whether a vortex ring like 
the one described in Moin, Leonard & Kim (1986) pinches off at a later time; it is 
possible that chaotic breakdown occurs first. The evolution of A vortices into 52 
vortices was also observed experimentally by Hama & Nutant (1963). 

The behaviour of the vertical shear layers is shown in figure 30 which gives contour 
plots of the vertical component of vorticity (w,) in a horizontal (x,z)-plane in the 
strong-w, region. Figure 30(a) corresponds to  t/t* = 1.6021 at y/6,* = 2.3, and figure 
30(b) to t/t* = 1.6221 a t  y/6,* = 2.8. The front portions of the thin vertical shear 
layers roll up in much the same way as the horizontal high-shear layer. 

Nearly all of the features that have been observed experimentally are explained by 
the physical model just described. The processes are the same as those associated 
with artificially-produced transition (Kovasznay et al. 1962 ; Wray & Hussaini 1984) ; 
compare Wray & Hussaini’s figure 5 with our figure 25. It is worth adding that these 
processes probably amplify small disturbances that destroy the symmetry of the A 
vortex and lead, after a short time, to the chaotic patterns associated with fully 
turbulent flow. 

5.2.3. Discussion 
The formation of very steep velocity gradients away from the plate causes trouble 

for the numerical method because the grid points are clustered tightly near the wall. 
We made higher-resolution runs in an attempt to resolve the further development of 
the flow structure, but were able to simulate only very little of the further 
development. A correct tendency towards multi-spike stages was found. However, 
vorticity contour plots showed signs of poor numerical resolution. To resolve the 
high-shear layer far from the wall properly, an adaptive-grid method is probably the 
best approach. The resolution in the other two directions, especially spanwise, is also 
heavily taxed. 

Although we considered a single A vortex in this section, similar physics was found 
in simulations in which multiple A vortices were present in the computational box. 
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6. Concluding remarks 
Laminar-turbulent transition in a decelerating flat-plate boundary layer has been 

investigated by direct numerical solution of the full NavierStokes equations. The 
mean velocity was assumed parallel to the plate, periodic boundary conditions were 
applied, and correct mean-velocity profiles were maintained by way of a body force. 
Small-amplitude white random noise was included in the initial conditions to 
eliminate bias in selecting which modes are amplified. 

In the early stages of transition, two-dimensional and/or slightly oblique waves 
initially grow because of an inflexional instability. Their subsequent nonlinear 
interactions trigger the breakdown and determine the pattern of the A vortices. The 
results are in good agreement with flow-visualization experiments (GH). The tips of 
the A vortices are rarely aligned in the flow direction, and they appear in local 
patches in space, often near the dislocation in the initial wave pattern. A simple 
wave-interference model accounting for these features of natural transition has been 
developed. It suggests that owing to interference among multiple waves amplified at  
the linear stage of natural transition, the peak perturbations are not necessarily 
aligned normal to the flow direction, and occur locally in space. Since breakdown 
occurs where the primary instability is strong, the model explains the observed 
pattern of the A vortices. This model was tested numerically, and the resultant 
pattern of the A vortices showed features found in the full simulation. It was also 
demonstrated that the selection of dominant waves is governed by small differences 
in the unpredictable initial disturbances. 

The later stages of transition were studied with higher numerical resolution. Our 
results indicate that the naturally-born A vortices undergo breakdown processes 
similar to those of ribbon-induced A vortices. The breakdown of high-shear layers 
into concentrated vortices and the subsequent evolution of SZ vortices observed in 
forced-transition experiments (Hama & Nutant 1963) are also detected in our 
simulation. It was shown that a shear-layer instability (sometimes called the tertiary 
instability) appears in the upstream part of the high-shear layer; it resembles a 
vortex-sheet roll-up and explains the development of the multiple-spike stages. To 
proceed to the terminal stages of breakdown, one needs to be able to resolve the high- 
shear layers away from the wall. 
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Appendix. Mathematical equivalence of decelerating-plate and 
decelerating-free-stream flows 

In this Appendix, it will be demonstrated that the governing equations and 
boundary conditions for the decelerating-plate problem can be reduced to those of 
the decelerating-free-stream problem using a reference frame moving with the plate 
(it is not a Galilean reference frame because the plate is decelerating). Both 
independent and dependent variables are transformed with respect to the reference 
frame. 

Let primed variables be those in the inertial (laboratory) reference frame, and 



466 K.-S. Yang, P .  R .  Spalart and J .  H .  Ferziger 

unprimed variables be those in the moving reference frame. Prandtl’s boundary- 
layer equations (Schlichting 1979) for a two-dimensional decelerating-plate problem, 
along with the continuity and the initial and boundary conditions, read 

au av 
ax/ ay/ 
-+- = 0, 

U’ = - UIB(x’, y‘) 
U’ = -Uw(t‘) 

V’ = O  a t  y’ = 0, 
U ’ + O  asy’+co, 

a t  t’ = 0, 

at  y‘ = 0, 

where U,, is the inverted Blasius profile, and Uw is the speed of the plate. The 
pressure is assumed constant throughout the flow field. It is important to note that 
(A 1)-(A 6) are valid on only X’E [xi,, x;,+L]. Here, xie(t’) is the position of the 
leading edge of the plate a t  a given time, t’. Thus, 

d4e - U’(x’, 0, t ’ )  = 7 - - UW(t’). 
dt 

The new variables with respect to the moving reference frame are defined as 

x = x’-xi,(t’), y = y’, t = t’, u = u’+ U,(t’), v = v. (A 8) 

Introducing the new variables defined above, and using the chain rule, one can 
obtain 

(A 9) 
au au au au a 2 u ’  a2u av av 
ax’ a x 3  ay/ a y 3  a y / 2  a y 2 ’  ay/ ay’  

au a u a x  a u a y  auat 
at’ ax at! ay at! at at! 

_ _  -- -- - =- - - - 

For the unsteady term, i t  can be shown that 

-=--+--+-- 

au au 
= U,(t)-+- ax at 

aU aU dUw(t) 
ax at dt 

= Uw(t)-+--- 

Substituting (A 9) and (A 10) into (A 1)-(A 6) ,  one gets the following set of governing 
equations and initial and boundary conditions, 

au au au d u w  a2u -+u-+v-= -+v-, 
at ax ay dt ay2 

au av -+- = 0, 
ax ay 

U = U,(x, y) a t  t = 0, 
U = V = O  a t y = O ,  

U - t  U,(t) as y+ co. 
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Equations (A 11)-(A 15) are valid on x € [ O , L ] .  This new formulation represents a 
decelerating-free-stream problem, if U J t )  is interpreted as the velocity of the 
freestream (U,( t )  = U,(t)) .  Then dU,/dt is an effective pressure gradient. 
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